Formation Python Machine Learning avec Scikit.Learn

0,0 rating
Logo Formation Scikit-learn - Python Machine Learning

1400€

1260€ HT / personne

2 jours (14 heures)

Paris
Il ne reste que quelques places
Disponible aussi en intra-entreprise pour former votre équipe.

Présentation

Scikit-learn (ou Sklearn) est une bibliothèque libre Python dédiée à l’apprentissage automatique. Elle est développée par de nombreux contributeurs notamment par des instituts français d’enseignement supérieur et de recherche comme Inria et Télécom ParisTech. Elle comprend notamment des fonctions pour estimer des forêts aléatoires, des régressions logistiques, des algorithmes de classification, et les machines à vecteurs de support. Elle est conçue pour s’harmoniser avec d’ autres bibliothèques libres Python, notamment NumPy et SciPy.

Cette formation vous permettra d’acquérir les connaissances nécessaires pour interagir avec Sklearn. Elle abordera sa syntaxe, les outils ainsi que les bonnes pratiques de développement, afin de bénéficier de tous les atouts de cette bibliothèque. Nous présenterons les algorithmes, les méthodes supervisées et non supervisées les fonctionnalités de classification, régression et le clustering.

Comme toutes nos formations, celle-ci vous présentera la dernière version stable en date et ses nouveautés (Scikit-learn 0.20.3 sortie en Mars 2019 à la date de l’article, et Python 3.7.3).

 

Objectifs

  • Mettre en œuvre des algorithmes d’apprentissage machine en python avec Scikit-Learn
  • Pouvoir choisir une stratégie de montée en charge pour Scikit-Learn
  • Utiliser Scikit-Learn en conjonction avec d’autres toolkit de l’univers Python (par ex. Skimage ou OpenCV)
  • Être en mesure de citer les différents composants de Scikit-Learn, leur usage, trouver rapidement leur documentation.

 

Public visé

Public d’analystes, Data Miners, Chargés d’études statistiques, Directeurs d’études, Développeurs

 

Pré-requis

Savoir programmer en Python 2 ou 3, et avoir une bonne connaissance en traitement et manipulation de données et algèbre linéaire.

 

Pour aller plus loin

Vous souhaitez en savoir plus sur le machine learning nos formations vous attendent

Programme de la formation Python Machine Learning avec Scikit.Learn

 

Introduction

  • Qu’est-ce que le Machine Learning ?
  • Apprentissage Machine Learning ?
  • Installation scikit-learn
  • Clean Data
  • Sur-ajustement et la généralisation
  • Validation croisée
  • Bias-Variance Trade-Off
  • Vérification et mise à jour de l’installation de sciKit-learn
  • Solutions et Avantages : L’état des arts
    • Tensorflow et Keras
    • Scikit‐learn
    • Deeplearning for Java
    • pytorch et fastai

 

Concepts de bases SCIKIT

  • Algorithmes, vocabulaire
  • Panorama de scikit-learn
  • Démarche d’apprentissage
  • Périmètre du toolkit, domaine d’application
  • Structure
  • Représentation des données et principes de l’API
  • La documentation

 

MÉTHODES DE MACHINE LEARNING

  • Les méthodes supervisées
    • KNN
    • SVM
    • Réseaux de neurones
    • Réseau bayésien naif
    • Régression pénalisée
    • Boosting
    • Random forest
  • Les méthodes non supervisées
    • Clustering
    • Règles d’associations et de séquences
    • Traitement du texte (text mining)

 

 

Catégories de problèmes et mise en oeuvre avec SCIKIT LEARN

  • Classification
    • Définition des arbres de décision
    • Arbres de décision
    • Modèles d’ensemble
    • Classificateur de Random Forest
  • Régression
    • Arbres de décision
    • Modèles de régression
    • Définition d’un hyperplan
    • Anatomie d’un estimateur
    • Régression linéaire simple
    • La fonction COST
    • Qu’est-ce que R-Squared ?
    • Évaluation du modèle
    • Régularisation
    • Régression linéaire à plusieurs variables
    • Régression linéaire appliquée
    • Visualisation de notre DataSet
  • Clustering
    • Animation du Cluster K-Means
    • L’algorithme K-Means
    • Application du Clustering K-Means
  • Autres algorithmes disponibles

 

Les modèles

  • Validation des modèles
  • Préparation des modèles
    • Cas des images
    • Cas des textes
    • Réduction des dimensions
    • Autres préparations

 

Optimisation

  • Comment régler son algo de ML ?
  • HPO = Hyper Parameter Optimization
  • AutoML
  • Présentation d’un kaggle master

 

Utilisation des paramètres de gestion SCIKIT

  • Choisir le bon estimateur et les bons paramètres
  • Interopérabilité avec écosystème python scientifique
  • Performance et montées en charge
    • Stratégie
    • Outils
Langues et Lieux disponibles

Langues

  • Français
  • Anglais / English

Lieux

  • France entière
    • Paris
    • Lille
    • Reims
    • Lyon
    • Toulouse
    • Bordeaux
    • Montpellier
    • Nice
    • Sophia Antipolis
    • Marseille
    • Aix-en-Provence
    • Nantes
    • Rennes
    • Strasbourg
    • Grenoble
    • Dijon
    • Tours
    • Saint-Étienne
    • Toulon
    • Angers
  • Belgique
    • Bruxelles
    • Liège
  • Suisse
    • Genève
    • Zurich
    • Lausanne
  • Luxembourg

    Témoignages

    Il n'y a pas encore de commentaires. Soyez le premier à en écrire un dans la section noter la formation !

    Afficher tous les témoignages

    Il n'y a pas encore de commentaires. Soyez le premier à en écrire un dans la section noter la formation !

    Noter la formation

    1400€

    1260€ HT / personne

    2 jours (14 heures)

    Paris
    Il ne reste que quelques places
    Disponible aussi en intra-entreprise pour former votre équipe.

    Une question ? Un projet ?

    Pour des informations complémentaires, n’hésitez pas à nous contacter.