Formation TensorFlow

4,6 rating
Logo Formation TensorFlow

2700€

2430€HT/ personne

4 jours (28 heures)

Interentreprises

­Paris

Disponible en intraentreprise pour former votre équipe.

rIl ne reste que quelques places

Présentation

TensorFlow est devenu en un temps record l’un des frameworks de référence pour le Deep Learning et l’Intelligence Artificielle, utilisé aussi bien dans la recherche qu’en entreprise pour des applications en production.

Découvrez comment résoudre des problèmes difficiles de Machine Learning avec la nouvelle librairie Open Source Tensorflow, le système révolutionnaire de Google d’apprentissage profond. Cette formation pratique vous montre comment construire, et quand utiliser, des architectures d’apprentissage profond. Vous apprendrez comment concevoir des systèmes capables de détecter des objets dans des images, comprendre la parole humaine, analyser la vidéo et prédire certains phénomènes. Nous aborderons ces concepts à travers des exemples pratiques afin que vous puissiez utiliser cette technologie dans vos projets Big Data. La formation AI & Deep Learning avec Tensorflow abordera les réseaux de neurones (convolutional neural networks). Vous maîtriserez également les concepts clés tels que la fonction SoftMax, les réseaux neuronaux à code automatique (Autoencoder Neural Networks), les réseaux récurrents, la machine Boltzmann restreinte (RBM, Restricted Boltzmann Machine).

Comme dans toutes nos formations, celle-ci vous présentera la toute dernière version de TensorFlow (à la date de rédaction de l’article : TensorFlow 1.13).

 

Objectifs

  • Être capable d’installer et d’utiliser TensorFlow et ses nouveautés de manière autonome
  • Comprendre le concept de Deep Learning et être capable de l’utiliser avec TensorFlow
  • Manipuler des volumes importants de données en utilisant les bonnes pratiques grace à TensorFlow

 

Public visé

Développeurs, Architectes, Big Data Data analyst / Data scientist

 

Pré-requis

  • Connaissance de Python

 

Programme de la formation TensorFlow

Comprendre le Deep Learning

  • Deep Learning : La révolution de l’Intelligence Artificielle
  • Les limites du Machine Learning
  • Avantages du Deep Learning face au Machine learning
  • Les raisons de passer au Deep
  • Exemples de la vie réelle et scénarios applicables
  • Les Math derrière le Machine Learning : Linear Algebra
    • Scalars
    • Vectors
    • Matrices
    • Tensors
    • Hyperplanes
  • Les Math derrière le Machine Learning : Statistics
    • Probability
    • Conditional Probabilities
    • Posterior Probability
    • Distributions
    • Samples vs Population
    • Resampling Methods
    • Selection Bias
    • Likelihood
  • Les algorithmes du Machine Learning
    • Regression
    • Classification
    • Clustering
  • Reinforcement Learning
  • Underfitting & Overfitting
  • Optimization
  • Convex Optimization

 

TensorFlow

  • Définition : Neural Networks
  • Biological Neuron
  • Perceptron
  • Multi-Layer Feed-Forward Networks
  • Apprentissage Neuronal (Learning Neural Networks)
  • Backpropagation Learning
  • Gradient Descent
  • Stochastic Gradient Descent
  • Quasi-Newton Optimization Methods
  • Generative vs Discriminative Models
  • Activation Functions
    • Linear
    • Sigmoid
    • Tanh
    • Hard Tanh
    • Softmax
    • Rectified Linear
  • Loss Functions
  • Loss Function Notation
  • Loss Functions for Regression
  • Loss Functions for Classification
  • Loss Functions for Reconstruction
  • Hyperparameters
  • Learning Rate
  • Regularization
  • Momentum
  • Sparsity

 

Comprendre les réseaux neuronaux

  • Defining Deep Learning
  • Defining Deep Networks
  • Common Architectural Principals of Deep Networks
  • Reinforcement Learning application in Deep Networks
  • Parameters
  • Layers
  • Activation Functions – Sigmoid, Tanh, ReLU
  • Loss Functions
  • Optimization Algorithms
  • Hyperparameters

 

Convolutional Neural Network (CNN Algorithm)

  • Introduction à CNN
  • Mise en application et architecture d’un CNN
  • Couches de convolution : Pooling layers in a CNN
  • Couches de convolution et de mise en commun dans une CNN
  • Comprendre et visualiser un CNN
  • Transfert d’apprentissage et mise au point des réseaux de neurones convolutionnels

 

Recurrent Neural Networks (RNN Algorithm)

  • Introduction au RNN Model
  • Cas d’utilisation du RNN
  • Modelling sequences
  • Apprentissage RNNs avec Backpropagation
  • Long Short-Term memory (LSTM)
  • Recursive Neural Tensor Network Theory
  • Recurrent Neural Network Model

 

RBM & Autoencoders

  • Restricted Boltzmann Machine
  • Applications de RBM
  • Collaborative Filtering avec RBM
  • Introduction à l’Autoencoders
  • Autoencoders applications
  • Comprendre et utiliser Autoencoders
  • Variational Autoencoders
  • Deep Belief Network
Langues et Lieux disponibles

Langues

  • Français
  • Anglais / English

Lieux

  • France entière
    • Paris
    • Lille
    • Reims
    • Lyon
    • Toulouse
    • Bordeaux
    • Montpellier
    • Nice
    • Sophia Antipolis
    • Marseille
    • Aix-en-Provence
    • Nantes
    • Rennes
    • Strasbourg
    • Grenoble
    • Dijon
    • Tours
    • Saint-Étienne
    • Toulon
    • Angers
  • Belgique
    • Bruxelles
    • Liège
  • Suisse
    • Genève
    • Zurich
    • Lausanne
  • Luxembourg

Nos Formateurs Référents

Maxence

Maxence

Entrepreneur spécialiste en Intelligence Artificielle, il est le co-fondateur et CTO de Boby, un assistant personnel d’un nouveau genre. Son temps se divise entre du développement d’architectures de réseaux de neurones très orientés vers le domaine du NLP et du développement serveur en NodeJS.

Témoignages

5,0 rating
20 décembre 2018

Globalement content de cette formation.
Je suis quelqu’un qui aime bien tout comprendre et savoir comment les choses fonctionnent.
Je savais qu’il s’agissait d’un domaine très complexe avec des problématiques compliquées et tout était nouveau pour moi.
J’ai appris pas mal de choses et Maxence a su vulgariser les 2-3 méthodes que l’on a utilisées. Il a su m’ouvrir l’esprit sur ce qu’il est possible de faire en Deep learning avec Tensorflow et sur tout l’écosystème. Les notions basiques sont acquises et j’ai globalement compris le reste.
Les problèmes étaient complexes et le domaine gigantesque, je prends donc cette formation comme une ouverture et un boost pour me permettre de me lancer dans les problématiques IA au sein de mon entreprise. Je compte faire une autre formation de machine learning simple ( pas deep) pour m’ouvrir un maximum les horizons.
Néanmoins je trouve que ça manquait de professionnalisme. Maxence est très gentil et smart, mais je pense qu’il est toujours possible de mieux préparer les exercices de manière à ce que l’on fonctionne en vrai TP. Il aurait peut-être mieux valu nous laisser faire dans certains cas, sans son aide pour qu’on avance. Ça n’a pas posé plus de problème que ça ceci dit.
Je sors avec cette impression que j’ai appris 1% de ce qui se fait, et que j’ai beaucoup de travail alors c’est très frustrant, mais ça me motive aussi.!

Jules T. chez Bureaux A Partager
Afficher tous les témoignages
5,0 rating
20 décembre 2018

Globalement content de cette formation.
Je suis quelqu’un qui aime bien tout comprendre et savoir comment les choses fonctionnent.
Je savais qu’il s’agissait d’un domaine très complexe avec des problématiques compliquées et tout était nouveau pour moi.
J’ai appris pas mal de choses et Maxence a su vulgariser les 2-3 méthodes que l’on a utilisées. Il a su m’ouvrir l’esprit sur ce qu’il est possible de faire en Deep learning avec Tensorflow et sur tout l’écosystème. Les notions basiques sont acquises et j’ai globalement compris le reste.
Les problèmes étaient complexes et le domaine gigantesque, je prends donc cette formation comme une ouverture et un boost pour me permettre de me lancer dans les problématiques IA au sein de mon entreprise. Je compte faire une autre formation de machine learning simple ( pas deep) pour m’ouvrir un maximum les horizons.
Néanmoins je trouve que ça manquait de professionnalisme. Maxence est très gentil et smart, mais je pense qu’il est toujours possible de mieux préparer les exercices de manière à ce que l’on fonctionne en vrai TP. Il aurait peut-être mieux valu nous laisser faire dans certains cas, sans son aide pour qu’on avance. Ça n’a pas posé plus de problème que ça ceci dit.
Je sors avec cette impression que j’ai appris 1% de ce qui se fait, et que j’ai beaucoup de travail alors c’est très frustrant, mais ça me motive aussi.!

Jules T. chez Bureaux A Partager
5,0 rating
19 octobre 2018

3 jours étaient suffisants.
Après dans ce genre de formation, on aimerait bien aller plus en profondeur dans certaines techniques et/ou choix, mais qui nécessiterait beaucoup plus de temps.

David D. chez AirLiquide
4,0 rating
29 juin 2018

Bonne appréciation globale de la formation, formateur compétent et à l’écoute du groupe.
Avoir les différents exercices déjà prêts aurait aidé à gagner du temps, et de se concentrer sur les problématiques de ML.

Adnan A. chez 4Dconcept

Réponse d'Ambient Formations

Bonjour Adnan, et merci pour votre commentaire, cela nous aide beaucoup à améliorer notre formation. Maxence a pour habitude de créer du contenu différent, en fonction du groupe, mais aussi de l’actualité. Lors de la formation, c’est donc la Coupe du Monde qui a été mise en avant.

5,0 rating
28 juin 2018

Formation riche, permet d’acquérir les bonnes bases pour utiliser Tensorflow. Equipe sympathique et serviable. Bonne conditions de travail, ordinateurs, climatisation, boissons et gâteaux. Merci !

Patrick T. chez Safran
4,0 rating
28 juin 2018

J’ai appris beaucoup de choses !

Samuel B. chez Université Catholique de Lille
Noter la formation

2700€

2430€HT/ personne

4 jours (28 heures)

Interentreprises

­Paris

Disponible en intraentreprise pour former votre équipe.

rIl ne reste que quelques places

Une question ? Un projet ?

Pour des informations complémentaires, n’hésitez pas à nous contacter.